TRANSPORT PROCESSES IN MULTICOMPONENT GAS—LIQUID
MIXTURES
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Transport processes in multicomponent mixtures of dense gases and liquids are described.
The method for describing transport processes in dense media first proposed in [1] is used.

1. Initial System of Equations and Formulation of the Problem. To describe transport
processes in multicomponent dense mixtures we will use the following model:

The particles of the medium are considered structureless with a mass my and diameter
o;j (i =1, 2,..., m) is the mixture component number where m is the number of components in the

mixture; |
All mixture components are characterized by the same temperature T and mass velocity wu;

We consider paired particle interaction. The potential of paired intermolecular inter-
action of particles of types i andj,;¢ij(ri, r;) is definable as a sum of solid sphere poten-
tials and the long-range attractive portion of]the intermolecular potential Qoij(ri, zj)
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Here rj, rj are spatial coordinates of type i and j particles; ojj = (o5 + oj)/2 is the dis-
tance between type i and j particles upon contact.

The basic equation for the single-particle distribution function f;(rj, vi, t) of mix-
ture component i has the form
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where v; is the velocity of type i particles; t is time; Fij(rj, t) is the external force act-
ing on a type i particle; fzij(ri: Vi, Tj, Vi, t) is the two-particle distribution function:

fais = fiijej-
Here Gi'(ri’ Ty, t) is the paired particle pair-correlation function; Joi is the collision
integrai in the rigid sphere model:
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the prime denotes the value of functions after collision; e is a unit vector; vy ; = vy — V.

] In representing molecular interactions in the form of Eq. (1.1) the collision integral
appearing in Eq. (1.2) can be written in the form of the sum of contributions from particle
interactions with the rigid sphere potential ¢rsij(ri’ zj) and contributions from particle
interactions with the long-range attractive portion of the intermolecular potential defined
by the last term on the left side of Eq. (1.2). A similar representation of the collision
integral was considered in [2] and justified in [3].

Téking for the paired correlation function Gj; its equilibrium value Goj4j and consider-
ing the central character of the intermolecular potential ¢oij(ri’ rj), we write the left
side of Egq. (1.2) as
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and the right side in the form
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Transforming to dimensionless variables in Eq. (1.2) and equating Egs. (1.3) and (1.4)
we obtain

Dfy = &7 ;. (1.5)
Here € = (nriL)~™! = 2/L = Kn; € is a parameter defining the degree of system inhomogeneity,
having the order of magnitude of the gradients of the hydrodynamic variables; n is the nu-
meric particle density; r, is the effective intermolecular interaction radius; L is the
characteristic linear macroscopic flow dimension; £ = (nr2)~!; Kn is the Knudsen number.

For practically all flows of dense gas and liquid this parameter is small (e « 1) and thus
in finding the solution of system (1.5) in the hydrodynamic regime one can construct that
solution as an expansion in the small parameter e.

2. Hydrodynamic Asymptote of the Solutions of System (1.5). System (1.5) can be
solved by the Chapman—Enskog method [4], where for the small parameter € we use gradients
of the hydrodynamic variables. We seek a solution in the hydrodynamic regime in the form

00

o= Felrn Ve Ta(n ) = 3 enf™ (v, vi, T (1, £) (2.1)

n=g
(rj(x, t) are the mean values of the hydrodynamic variables).

Substitution of Eq. (2.1) in the expression for J.j, Eq. (1.4), and expansion of the
integrand terms therein in a Taylor series in the vicinity of the point with coordinate rj
leads to an expression for the right side of Eq. (1.5) in the form of a series in powers of
g
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We substitute Eq. (2.1) into Eq. (1.3) and expand the evolution operator in a series
in the small parameter €. This reduces Eq. (1.3) to the form
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With consideration of Eqs. (2.2) and (2.3), Eq. (1.2) takes on the form
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Now in Eq. (2.4) we equate terms with identical powers of the parameter &, obtaining
equations for finding the quantities f{™' which appear in Eq. (2.1), defining the single-
particle distribution function.

We will solve Eq. (2.4) in the zeroth approximation in hydrodynamic quantity gradients:

0= Jﬁ?i This solution, which is a local equilibrium solution of Eq. (1.2), can be written
as
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i
where %4s i(rj, t) is the interaction energy of particle i with all mixture particles;
o, af¥, «f¥ are constants subject to definition.

As a result we have
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Here k is Boltzmann's constant; f;(rj, vi, t) is the local equilibrium Maxwell distribution
function; T(xr, t) and w(r, t) are the local values of temperature and hydrodynamic velocity.
Solubility of the inhomogeneous linear integral equations of system (2.4) requires ortho-
gonality of the invariants of the collision integrals J.; to the inhomogeneous portion of
integral equations of Eq. (2.4).

In the zeroth approximation in thermodynamic quantity gradients we obtain Euler type
hydrodynamics equations, in which the new expressions for the pressure p(xr, t) and the spe-
cific heat of the mixture at constant volume cy(r, t) have the form

znkTJ [1+2” ZnJ%J X (2.5)
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(01 ) is the value of the function at the point of contact of particles of types i and

Gol
%unctlon arguments are omitted where possible.

We write the solution of Eq. (1.2) in the approximation linear in thermodynamic quan-
tity gradients for a single-particle distribution function as

fo= fip[1 + D], (2.6)
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U is a unit tensor; S4 (W?) "are Sonin polynomials [4]; di(x, t) is the diffusion thermody-
namic force of mixture component k, defined in the usual manner [4], with new values for the
mixture pressure and specific heat, Eq. (2.5).

The system of linear equations for finding the coefficients a;, p{?, b2, 4 { has the form
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where Y denotes the N-th order approximation in Sonin polynomials. The quantities appear-

g==0
ing in Eq (2.7) are defined by the relationships
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(the symbol [;] denotes integral brackets [4]).

3. Transport Coefficients of a Dense Medium. The single-particle distribution func-
tion (2.6) permits determination of the transport coefficients of a dense medium (shear vis-
cosity n;, volume viscesity n,, thermal conductivity A, mutual diffusion Dlj, barodiffusion

DI‘i) thermodiffusion ratio K'E thermodiffusion DT)
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With consideration of Eq. (3.1) the expressions for the momentum flux tensor I(r, t),
the heat flux vector Q(r, t), the mass flux vector Ji(r, t) of mixture component i have the form
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where £(xr, t) is the deformation rate tensor; pi{r, t) is the mass density of component ij;
h; is the specific partial enthalpy.

We note that the initial generalization of the Enskog equation to the case of a mixture
[4] had the shortcoming that the transport coefficients did not satlsfy the Onsager rela-
tionships [5]. This fault was corrected in [6].

In the present study satisfaction of the Onsager reciprocity relationships is en-
sured by correct choice of the expressions for the thermodynamic quantity fluxes and thermo-
dynamic forces which minimize the entropy production for steady state processes. To do
this it is necessary to use the equilibrium paired correlation distribution function which
is a nonlocal functional of the thermodynamic variable fields. Thus in the approximation
linear in thermodynamic quantity gradients the kinetic equation will contain an additional
term in the collision integral. Consideration of such terms, as was shown in [6], permits
solutions which agree with the thermodynamics of nonequilibrium processes and énsures satis-
faction of the Onsager reciprocity relationships.

The expressions for the transport coefficients obtained in the present study agree with
transport coefficients found with the approach of [6] in the limit in which the attractive
portion of the intermolecular potential &,4(ry, zj) may be neglected.
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